Solar Cell Power Performance Boosted 60-70 Percent by Nanoparticles Used In Octillion’s ‘NanoPower Window’

New study in American Institute of Physics’ publication confirms that silicon nanoparticles used in Octillion’s NanoPower Window, when placed on a silicon solar cell, can boost power, reduce energy-wasting heat, and prolong life of conventional solar cells.

Vancouver, BC – August 20, 2007 – Octillion Corp. (Symbol: OCTL), today announces that a published research study has demonstrated, among other achievements, that the same silicon nanoparticles used in development of the Company’s first-of-its-kind transparent glass window capable of generating electricity, are able to drastically increase the power performance of conventional silicon solar cells.

In experiments where silicon nanoparticles were applied on top of solar cells, researchers observed large voltage enhancements with dramatic increases in power ranging from as much as 60-70% in the ultraviolet-blue (UV) range, and further reported a significant boost in power by as much as 10% in the visible light range – a major accomplishment.

“The exceptional power performance of these silicon nanoparticles is a substantial achievement, and is especially significant since our use of these same nanoparticles is key to the development of Octillion’s transparent glass windows capable of generating electricity, an innovation that I believe can potentially reduce the harmful environmental impact associated with traditional electrical power generation,” explained Mr. Harmel S. Rayat, President and CEO of Octillion Corp.

Mr. Rayat continues, “Of particular note, the nanoparticle layers used in these experiments not only increased power performance of the conventional solar cell, but importantly, these nanoparticles were able to successfully convert the same UV components that typically cause damage and create wasteful heat, into useful electrical energy. This process not only increases power, but it also serves to reduce UV damage to the solar cell, thus helping increase its lifespan.

“Above all, the nanoparticles in these studies were in the same size ranges used for our window technology, and were layered to create a transparent film, similar to the desired transparency we aim to achieve with Octillion’s NanoPower Windows.”

In key experiments, researchers integrated ultrathin films of silicon nanoparticles of 1nm and 3nm in diameter directly onto conventional polycrystalline solar cells (BP Solarex Si cells), forming a transparent layer of silicon nanoparticles; the same transparent nanoparticles used in Octillion’s window technology.

Researchers published their breakthrough findings in the August 6, 2007 edition of the American Institute of Physics’ highly respected and refereed, Applied Physics Letters, ranked in recent years as the world’s most highly cited journal in applied physics, and renowned as the premier source for publication of discoveries in physics phenomena for more than 40 years.

SolarWindow Technologies, Inc. creates transparent electricity-generating liquid coatings. When applied to glass or plastics, these coatings convert passive windows and other materials into electricity generators under natural, artificial, low, shaded, and even reflected light conditions.

Our liquid coating technology has been presented to members of the U.S. Congress and received recognition in numerous industry publications. Our SolarWindow™ technology may generate 50-times the power of a conventional rooftop solar system and may achieve a one-year payback when installed on all four sides of a 50-story building, according to independently-validated power and financial modeling.

Power and Financial Model Disclaimer

The company's Proprietary Power Production & Financial Model (Power & Financial Model) uses photovoltaic (PV) modeling calculations, which are consistent with renewable energy practitioner standards for assessing, evaluating and estimating renewable energy for a PV project. The Power & Financial Model estimator takes into consideration building geographic location, solar radiation for flat-plate collectors (SolarWindow™ irradiance is derated to account for 360 degrees building orientation and vertical installation), climate zone energy use and generalized skyscraper building characteristics when estimating PV power and energy production, and carbon dioxide equivalents. Actual power, energy production and carbon dioxide equivalents modeled may vary based upon building-to-building situational characteristics and varying installation methodologies.

For additional information, please call Ms. Briana L. Erickson toll­ free at 1­-800­-213­-0689 or visit: 
www.solarwindow.com

To receive future press releases via email, please visit:
https://solarwindow.com/join-our-email-list/

Follow us on Twitter @solartechwindow, or follow us on Facebook.

To view the full HTML text of this release, please visit:
https://solarwindow.com/media/news-events/

For answers to frequently asked questions, please visit our FAQs page:
https://solarwindow.com/investors/faqs/

Media Contact:

Damaak Group

415-799-8027

media@solarwindow.com

Social Media Disclaimer

nvestors and others should note that we announce material financial information to our investors using SEC filings and press releases. We use our website and social media to communicate with our subscribers, shareholders and the public about the company, SolarWindowTM technology development, and other corporate matters that are in the public domain. At this time, the company will not post information on social media that could be deemed to be material information unless that information was distributed to public distribution channels first. We encourage investors, the media, and others interested in the company to review the information we post on the company's website and the social media channels listed below:

• Facebook
• Twitter

* This list may be updated from time to time.

No statement herein should be considered an offer or a solicitation of an offer for the purchase or sale of any securities. This release contains forward-looking statements that are based upon current expectations or beliefs, as well as a number of assumptions about future events. Although SolarWindow Technologies, Inc. (the "company" or "SolarWindow Technologies") believes that the expectations reflected in the forward-looking statements and the assumptions upon which they are based are reasonable, it can give no assurance that such expectations and assumptions will prove to have been correct. Forward-looking statements, which involve assumptions and describe our future plans, strategies, and expectations, are generally identifiable by use of the words "may," "will," "should," "could," "expect," "anticipate," "estimate," "believe," "intend," or "project" or the negative of these words or other variations on these words or comparable terminology. The reader is cautioned not to put undue reliance on these forward-looking statements, as these statements are subject to numerous factors and uncertainties, including but not limited to adverse economic conditions, intense competition, lack of meaningful research results, entry of new competitors and products, adverse federal, state and local government regulation, inadequate capital, unexpected costs and operating deficits, increases in general and administrative costs, termination of contracts or agreements, technological obsolescence of the company's products, technical problems with the company's research and products, price increases for supplies and components, litigation and administrative proceedings involving the company, the possible acquisition of new businesses or technologies that result in operating losses or that do not perform as anticipated, unanticipated losses, the possible fluctuation and volatility of the company's operating results, financial condition and stock price, losses incurred in litigating and settling cases, dilution in the company's ownership of its business, adverse publicity and news coverage, inability to carry out research, development and commercialization plans, loss or retirement of key executives and research scientists, changes in interest rates, inflationary factors, and other specific risks. There can be no assurance that further research and development will validate and support the results of our preliminary research and studies. Further, there can be no assurance that the necessary regulatory approvals will be obtained or that SolarWindow Technologies, Inc. will be able to develop commercially viable products on the basis of its technologies. In addition, other factors that could cause actual results to differ materially are discussed in the company's most recent Form 10-Q and Form 10-K filings with the Securities and Exchange Commission. These reports and filings may be inspected and copied at the Public Reference Room maintained by the U.S. Securities & Exchange Commission at 100 F Street, N.E., Washington, D.C. 20549. You can obtain information about operation of the Public Reference Room by calling the U.S. Securities & Exchange Commission at 1-800-SEC-0330. The U.S. Securities & Exchange Commission also maintains an Internet site that contains reports, proxy and information statements, and other information regarding issuers that file electronically with the U.S. Securities & Exchange Commission at http://www.sec.gov. The company undertakes no obligation to publicly release the results of any revisions to these forward looking statements that may be made to reflect the events or circumstances after the date hereof or to reflect the occurrence of unanticipated events.